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CHAPTER 2: 

VECTORS IN 3D 

 
2.1 DEFINITION AND REPRESENTATION OF VECTORS 

A vector in three dimensions is a quantity that is determined by its magnitude and direction. 
Vectors are added and multiplied by numbers in specific ways that are discussed later on in the 
section. 

Vectors in three dimensions can be represented by an arrow.  An arrow has components of 
magnitude and direction: the direction in which it points and the length of the arrow.  Hence an 
arrow is a useful means to represent phenomena that is characterized by its direction and 
magnitude.  For example, if we wish to represent the velocity of an automobile in a given instant 
of time, the direction of the arrow is the direction in which the automobile is moving at that 
moment and the length of the vector represents the speed of the automobile.  

However the notion of a vector consists only of 
magnitude and direction. Hence we have to 
modify our idea of an arrow to think only of its 
length and direction. This will mean that 
different arrows of the same length and pointing 
in the same direction, as in Figure 2.1.1, will 
represent the same vector. Mathematicians can 
get around this difficulty by saying that a vector 
is a set containing all arrows that point in a given 
direction and have a given magnitude. However we will keep it simple and think of a vector as an 
arrow that can be moved around as long as we don’t change its magnitude or direction. 

 

DISPLACEMENT VECTORS 

Suppose that a Saint Bernard starts the day at a point P and ends the day at a point Q that is 10 
miles northeast of P. Suppose that another Saint Bernard starts the day at a very distant point R 
and ends the day at a point S that is 10 miles northeast of R (see Figure 2.1.2). If we are only 
interested in overall displacement, all we care about is that each of the dogs ended the day at a 
distance of 10 miles from the starting point and in the northeast direction from the starting point. 
The displacement vector of each of the dogs is exactly the same. We don’t care how they got 
from starting point to ending point. Their actual travel paths could be very different. If we only 
consider starting point and ending point, both dogs moved the same distance in the same 
direction and hence their displacement vectors are the same.  

 
Figura 2.1.1 
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Figure 2.1.2 

 

Having determined what a vector is, our next step is to represent it. If we place an arrow in three 
dimensions then the magnitude and direction of the arrow will be determined if we are told how 
many units we must move in the x direction, in the y direction, and in the z direction, in order to 
get from the tail to the head of the arrow (see Figure 2.1.3). Hence, in three dimensions, the 
following notation can be used to represent a vector, v : 

,,
a
babc
c

v ==





  

 a is the number of units moved in the x direction. 
 b is the number of units moved in the y direction. 
 c is the number of units moved in the z direction. 

 

 
Figure 2.1.3 

 

For convenience, in this text we will use the notation ,,vabc= . 
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Practice Problems 

PP 2.1.1 

a. Place the points P (-1, 2, 3) and Q (2, 4, 5) in your 3D Kit. 

b. Connect the two points with a vector. 

c. Obtain the displacement in x, the displacement in y, and the displacement z for the vector 
and use this to find the vector < a, b, c > that represents the displacement from P (-1, 2, 
3) to Q (2, 4, 5). 

Solution 

a.  
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b.  

c. < 3, 2, 2 >  

PP 2.1.2 

Reflect on the previous practice problem and examples and think of a formula to obtain the 
vector representing the displacement from P (x1, y1, z1) to Q (x2, y2, z2). 

Solution 

< x2 - x1, y2 - y1, z2 - z1 >  

PP 2.1.3 

a. With your 3D Kit, place the start (tail) of the vector < 1, 3, 3 > at the point (1, 1, 2). What 
are the coordinates of the point where the vector ends? 

b. Now continue by placing the start vector < 2, -4, 1 > where the vector < 1, 3, 3 > ends. 
What are the coordinates of the point where the vector < 2, -4, 1 > ends? 

c. Place a vector from the point < 1, 1, 2 >, where < 1, 3, 3 > commences, to the point 
obtained in (b), where < 2, -4, 1 > ends. This is the vector < 1, 3, 3 > + < 2, -4, 1 >. Find 
the representation < a, b, c > for this vector. 
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Solution 

a.  

b.  
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c.  

 

2.2  OPERATIONS WITH VECTORS 

THE SUM OF TWO VECTORS 

Suppose a person starts at a point P and moves 3 miles to the north. This displacement can be 
represented with a vector a . Now suppose that the person moves 4 miles to the east to arrive at a 
point R. This second displacement is represented with a vector b

 . The total displacement from 
point P to point R is the vector that we call ab+

 . As Figure 2.2.1 shows, the magnitude of ab+
  

is 5 miles (not 7 miles) and the direction can be described as 1tan(4/3)− 53≈°  east of due north.  

Vector addition is defined so that if a  and b
  are displacement vectors then ab+

  is the vector 
that represents a displacement of a  followed by a displacement of b

 . Given vectors a  and b
  

their sum, ab+
 , is formed as follows: represent the vector a  in three-dimensional space, so that 

it starts at some point P and ends at some point Q.  Now take vector b
  and place it so that it 

starts where vector a  ends, that is, so it will start at Q and end at some point R.  The resulting 
vector that passes directly from P to R is denoted ab+

 . Figures 2.2.1 and 2.2.2 both show vector 
additions. 
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Figure 2.2.1 Figure 2.2.2 

 

Example Exercise 2.2.1: To Obtain the Algebra from the Geometry 

If we have the vectors 2,3,2a =
  and 1,2,1−− , they can be placed end to end. Vector a  has a 

displacement of two units to the east and b
  a displacement of one unit to the east. 

Correspondingly, the net displacement in x of ab+
  is three units to the east. Vector a  has a 

displacement of three units north and b
  of two units south.  Correspondingly, the net 

displacement in y of ab+
  is 1 unit north.  Vector a  has a displacement of two units up and b

  
has a displacement of one unit down.  Correspondingly, the net displacement in z of  ab+

  is 1 
unit up.  Putting it all together we can conclude that ab+

 = 2,3,21,2,13,1,1+−−= .  

 

MULTIPLYING A VECTOR BY A POSITIVE SCALAR 

If four copies of a vector a  are placed end to end, the resulting sum is denoted aaaa+++
 =  

4a . The net effect of this operation is a vector with the same direction as a  and a length four 
times greater than the length of a  (see Figure 2.2.3). Also, if we take a vector with the same 
direction as a  and a length half as long as the length of a , the resulting vector is denoted (1/2) a  
(see Figure 2.2.4). In general, if a vector is multiplied by a positive number k, the resulting vector 
will have the same direction with length altered by a factor of k. Borrowing terminology from 
physics, a number k is called a scalar. 
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Example Exercise 2.2.2: To Obtain the Algebra from the Geometry 

If we have the vector 1,1,1a =−
 , three vectors 'as  can be placed end to end as shown in Figure 

2.2.5 to obtain 3a . One a  has a movement of one unit to the east so three 'as  in succession will 
have a movement of three units to the east.  Correspondingly the net movement in x of 3a  is 
three units to the east.  One a  has a movement of one unit to the north so three 'as  in succession 
will have a movement of three units north.  Correspondingly the net movement in y of 3a  is 
three units north.  One a  has a movement of one unit downward so three 'as  in succession will 
have a movement of three units downward.  Correspondingly the net movement in z of 3a  is 
three units downward. Hence 331,1,13,3,3a =⋅−=−

 . 

 

 
Figure 2.2.5 

  
Figure 2.2.3 Figure 2.2.4 
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Generalization 

In general we have: 

 

For example: 
31,2,33,6,9⋅=  

(1/2)4,8,22,4,1⋅−=−  

 

MULTIPLYING A VECTOR BY -1 

If we start with an arrow representing vector a  and do nothing more than change the direction of 
the arrow, the resulting vector is denoted  a−   or 1 a−⋅

  (see Figure 2.2.6). 

 

 
Figure 2.2.6 

 

Example Exercise 2.2.3: To Obtain the Algebra from the Geometry 

Assume that we have placed the vector 1,2,3a =
  so that it goes from ( )1,1,0  to ( )2,3,3  as in 

Figure 2.2.7.  If we simply change the direction of a , then, as shown in Figure 2.2.8, the 
resulting vector a−   can be placed to go from ( )2,3,3  to ( )1,1,0 . The displacement in the x 

direction of a  is one unit to the east.  If we change the direction, the displacement in the x 

Multiplying a Vector by a Positive Scalar 

 Algebraically: ,,,,kabckakbkc⋅= . 

 Geometrically: If 0k > , ka


 is obtained by starting with a


 and extending (or contracting) it 
to k  times its initial length.  
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direction of a−   is one unit to the west. The displacement in the y direction of a  is two units 
north.  If we change the direction, the displacement in the y direction of a−   is two units south. 
The displacement in the z direction of a  is three units upward.  If we change the direction, the 
displacement in the z direction of a−   is three units downward. Putting all of this together, we can 
conclude that 1,2,311,2,31aa−=−−−=−⋅=−⋅

 . 

 

  
Figure 2.2.7 Figure 2.2.8 

 

To summarize: 

 

 

 

Vector Subtraction 

Vector subtraction is defined as follows: ( )abab−=+−
  so that if 

123,,aaaa=
  and 

123,,bbbb=
  then 

112233 ,,abababab−=−−−
 . 

Multiplying a Vector by 1−  

 Algebraically: ,,,,1,,abcabcabc−=−−−=−⋅ . 

 Geometrically: a−


 is obtained by starting with a


 and rotating it so that it points in the 
opposite direction.  
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Now we can define vector subtraction: 

Example Exercise 2.2.4: Given vectors a  and b
  in Figure 2.2.9, represent ab−

  geometrically. 

Observe that ab−=
 ba−+

   and think of this last vector in terms of displacement vectors. First 
do the displacement b−

  and then follow it with a . So you’d start at the head of b
 , travel in the 

direction opposite to b
  and then travel in the direction of a  (see Figure 2.2.10). 

 

  
Figure 2.2.9 Figure 2.2.10 

 

Example  

4,2,32,1,42,1,1−=−  

3,5,22,2,15,3,3−−−−−=−−  

 

MULTIPLICATION BY A NEGATIVE CONSTANT 

Suppose 0k > . To multiply a vector a  by the negative constant k− , we can divide the process 
into two parts. 

 

 Step 1: ka  stretches or shrinks the vector a  to k times its initial length. 
 Step 2: 1kaka−=−⋅

  changes the direction of the vector ka . 
 

Geometrically, this is illustrated in Figure 2.2.11 and Figure 2.2.12 where we first stretch or 
shrink (if 1k >  we stretch, if 01 k<<  we shrink) a  to k  times its initial length and then we 
change its direction. 
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Figure 2.2.11 Figure 2.2.12 

 

Practice Problems 

PP 2.2.1 

a. With your 3D Kit, place the start of vector < 2, 2, 3 > at the point (-3, -2, 0). What are the 
coordinates of the point where the vector ends? 

b. Place a second copy of vector < 2, 2, 3 > where the vector < 2, 2, 3 > ends. What are the 
coordinates of the point where the vector < 2, 2, 3 > ends? 

c. Place a third copy of vector < 2, 2, 3 >, starting where the second vector < 2, 2, 3 > ends. 
What are the coordinates of the point where the third vector < 2, 2, 3 > ends? 

d. Place a vector from the point (-3, -2, 0), where the first vector < 2, 2, 3 > commences, to 
the point obtained in (c) where the third vector < 2, 2, 3 > ends. This is the vector 3 < 2, 
2, 3 >. Find a representation < a, b, c > for the vector 3 < 2, 2, 3 > 
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Solution 

a.  

b.  
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c.  

d.  
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PP 2.2.2 

a. Use your 3D Kit to place both vectors >−=< 1,3,3a and >−=< 3,5,2b  starting at the 
point P (1, 1, 3). 

b. Now starting at the point Q (3, -4, 6) represent a displacement of  followed by a 
displacement of . Where do you end? 

c. Use part (b) to represent vector . Is this different than vector ? 

 

Solution 

a.  
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b.      

 

c. Both are the same. 

PP 2.2.3 

a. With your 3D Kit, place the start of vector < 2, 3, -2 > at the point (-3, -3, 8). What are 
the coordinates of the point where the vector ends? 

b. Place a second copy of vector < 2, 3, -2 > starting where the first copy of vector < 2, 3, -2 
> ended. What are the coordinates of the point where the second vector < 2, 3, -2 > ends? 
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c. Place a vector from the point (-3, -3, 8), where the first vector < 2, 3, -2 > commences, to 
the point obtained in (b), where the second < 2, 3, -2 > ends. This is the vector 2 < 2, 3, -2 
>. Find a representation < a, b, c > for the vector 2 < 2, 3, -2 >. 

d. Change the direction of the vector obtained in (c). This is the vector -2 < 2, 3, -2 >. Find a 
representation < a, b, c > for the vector -2 < 2, 3, -2 >. 

 

Solution 

a.  
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b.  

c.  
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d.  

 

 

2.3  THE MAGNITUD OF A VECTOR 

FINDING THE MAGNITUD OF A VECTOR 

The magnitude or length of a vector ,,abc  is expressed as ,,abc .  The procedure to find this 

length is fundamentally the same as the procedure to find the distance between two points.  

Example Exercise 2.3.1: Find the length of the vector 3,4,6 . 

Step 1: As done in Figure 2.3.1, express vector 3,4,6  as a sum of a vertical vector 0,0,6  

and a horizontal vector 3,4,0 . The vector 0,0,6  has a length of 6. 

Step 2: As shown in Figure 2.3.2, find the length of vector 3,4,0  in the xy plane.  As this is 
a problem in two dimensions, we can use Pythagoras as usual to show that the length 
of the vector 3,4,0  in the xy plane is equal to 5. 
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Figure 2.3.1 Figure 2.3.2 

 

 Step 3: Use the right triangle in Figure 2.3.3 and the Theorem of Pythagoras to obtain the 

length 
22

3,4,65661=+= . 

 

 
Figure 2.3.3 

 

In general, to find the length of the vector ,,abc : 

Step 1: As in Figure 2.3.4, express vector ,,abc  as the sum of vertical vector 0,0, c  and 

horizontal vector ,,0ab . Note that the length of vector 0,0, c  is c . 
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Figure 2.2.4 Figure 2.3.5 

     

Step 2: Find the length of the vector ,,0ab  in the xy plane. As this is a problem in two 

dimensions, we can use the Theorem of Pythagoras to show that the length of the 
vector ,,0ab  in the xy plane is equal to 22ab+  (see Figure 2.3.5).   

Step 3:  Finally, we can use Pythagoras on the right triangle in Figure 2.3.6 to quickly 

conclude that the length of ,,abc  is ( )2 222222abcabc++=++ . 

 

 
Figure 2.3.6 

 

Hence we have: 

 

 

 

Magnitude of a Vector 

The magnitude of a vector ,,abc  is 222,,abcabc=++ . 
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Practice Problems 

PP 2.3.1 

The following problems begin at the point (-1, 0, 0). 

a. On the base of your 3D Kit, use Pythagoras to find the length of the vector < 2, 3, 0 >. 

b. At the end of the vector < 2, 3, 0 >, place the vector < 0, 0, 4 >. What is the length of this 
vector? 

c. Place the vector < 2, 3, 0 > + < 0, 0, 4 > = < 2, 3, 4 > so that the three vectors < 2, 3, 0 >, 
< 0, 0, 4 >, and < 2, 3, 4 > form a right triangle. Draw this right triangle on a sheet of 
paper, indicating which lengths are known. 

d. Use the Pythagorean Theorem to obtain the length of the vector < 2, 3, 4 >. 

Solution 

           

a. c = 134923 22 =+=+  
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b.  

 

c.  

d. d = ( ) 291613413 22
=+=+  
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2.4  UNIT VECTORS AND NORMALIZATION 

DEFINITION  

A unit vector is a vector with length equal to 1. 

Examples 

Vector 0,1,0  has length 2220101++=  and so it is a unit vector. 

Vector 0.6,0,0.8  has length 222(0.6)0(0.8)++ 0.3600.641=++= , so it is a unit vector. 

Vector 1,3,2−  has length 222(1)32−++ 1941=++≠ .  Hence it is not a unit vector. 

 

Example Exercise 2.3.1: Obtaining unit vectors    

Find a unit vector that points in the direction of 3,0,4− . 

Vector 3,0,4−  has length 222(3)04−++ 255== . Therefore if we want a vector with length 

1 we need to shrink 3,0,4−  to one fifth of its size. Hence, the solution is:  

(1/5)3,0,4⋅− = 3/5,0,4/5− . 

To verify, we need only check the length of  3/5,0,4/5−  as we know that multiplying by a 
positive scalar will shrink or extend a vector but will not change its direction. The length of 

3/5,0,4/5−  is  ( ) ( )22 23/504/59/2516/2525/251−++=+== .  Hence 3/5,0,4/5−  is a 

unit vector that points in the direction of 3,0,4− . See Figure 2.4.1. 

 

 
Figure 2.4.1 
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The procedure of finding a unit vector in a given direction is sometimes referred to as 
normalizing the vector. In general, if a vector a  has length a , multiplying the vector by the 

reciprocal of its length, 1/ a , will not change the direction and will change the length of the 

vector to 1.  The length of vector 
123,,aaaa=   is 222

123aaaa=++  and so we have: 

 

 

 

 

 

 

 

The unit vector 1 a
a


  is commonly written as a
a



 . 

Practice Problems 

PP 2.4.1 

a. What is the length of vector < 0, -4, 3 >? 

b. What fraction of < 0, -4, 3 > do we want to have a unit vector? 

c. Find a unit vector with direction equal to that of < 0, -4, 3 >. 

Solution 

a. 5259163)4(3,4,0 22 ==+=+−=>−<  

b. The fraction is 
5
1 of <0, -4, 3> 

c. The vector is 
5
1<0, -4, 3> = >

−
<

5
3,

5
4,0 . 

 

 

Normalization of Vector 123,,aaa  

A vector pointing in the direction of 
123,,aaaa=  with a length of 1 is: 

123222

123

11 ,,aaaa
a aaa

=
++


 . 
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Exercises: 

1. Illustrate the following: 

a. Use your 3D Kit to place both vectors 3,3,1a =−
  and 2,5,3b =−

  starting at the 
point ( )1,1,3P . 

b. Now starting at point ( )3,4,6Q −  represent a displacement of b−
  followed by a 

displacement of a . Where do you end? 
c. Use part (b) to represent vector ba−+

  . Is this different than vector ab−
 ? 

 
2. For each of the following sets of vectors,  

i. Place  and  on your 3D kit originating from the point (1, 1, 2) 

ii. Find  and    

iii. Find unit vectors that point in the directions  and  

iv. Place the vectors ,  and  on your 3D kit 
 

a.  and  

b.  and  

c.  and  

d.  and  

e.  and  
 

3. Given that  ,  and , express the following vectors in terms of , 

 and  . 
a. The vector that goes from the point (-3, 1 , 2) to the point (3, 1, 2). 
b. The vector that goes from the point (2, -1 , 4) to the point (2, 9, 4). 
c. The vector that goes from the point (2, -1 , 3) to the point (1, 1, 1). 
d. The vector that goes from the point (-2, 1 , 6) to the point (4, 6, -2). 
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4. In the following diagram,  (I.e., the vector that goes from point A to point E) and 

 
 

 
Express the following vectors in terms of   and    

i.  
ii.  

iii.  

iv.  
v.  

vi.  

vii.  
viii.  

ix.  
 

5. In the following diagram,   and  

  
Express the following vectors in terms of   and    

i.  
ii.  

iii.  

iv.  
v.  

vi.  

vii.  
viii.  

ix.  

 

 


